Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Front Cell Infect Microbiol ; 12: 905757, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2198697

RESUMEN

In early 2020, one of the most prevalent symptoms of SARS-CoV-2 infection was the loss of smell (anosmia), found in 60-70% of all cases. Anosmia used to occur early, concomitantly with other symptoms, and often persisted after recovery for an extended period, sometimes for months. In addition to smell disturbance, COVID-19 has also been associated with loss of taste (ageusia). The latest research suggests that SARS-CoV-2 could spread from the respiratory system to the brain through receptors in sustentacular cells localized to the olfactory epithelium. The virus invades human cells via the obligatory receptor, angiotensin-converting enzyme II (ACE2), and a priming protease, TMPRSS2, facilitating viral penetration. There is an abundant expression of both ACE2 and TMPRSS2 in sustentacular cells. In this study, we evaluated 102 COVID-19 hospitalized patients, of which 17.60% presented anosmia and 9.80% ageusia. ACE1, ACE2, and TMPRSS2 gene expression levels in nasopharyngeal tissue were obtained by RT-qPCR and measured using ΔCT analysis. ACE1 Alu287bp association was also evaluated. Logistic regression models were generated to estimate the effects of variables on ageusia and anosmia Association of ACE2 expression levels with ageusia. was observed (OR: 1.35; 95% CI: 1.098-1.775); however, no association was observed between TMPRSS2 and ACE1 expression levels and ageusia. No association was observed among the three genes and anosmia, and the Alu287bp polymorphism was not associated with any of the outcomes. Lastly, we discuss whetherthere is a bridge linking these initial symptoms, including molecular factors, to long-term COVID-19 health consequences such as cognitive dysfunctions.


Asunto(s)
Ageusia , Enzima Convertidora de Angiotensina 2/genética , COVID-19 , Trastornos del Olfato , Ageusia/etiología , Anosmia , COVID-19/genética , Cognición , Expresión Génica , Humanos , Trastornos del Olfato/genética , Receptores de Angiotensina , SARS-CoV-2
2.
Frontiers in cellular and infection microbiology ; 12, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-2072843

RESUMEN

In early 2020, one of the most prevalent symptoms of SARS-CoV-2 infection was the loss of smell (anosmia), found in 60-70% of all cases. Anosmia used to occur early, concomitantly with other symptoms, and often persisted after recovery for an extended period, sometimes for months. In addition to smell disturbance, COVID-19 has also been associated with loss of taste (ageusia). The latest research suggests that SARS-CoV-2 could spread from the respiratory system to the brain through receptors in sustentacular cells localized to the olfactory epithelium. The virus invades human cells via the obligatory receptor, angiotensin-converting enzyme II (ACE2), and a priming protease, TMPRSS2, facilitating viral penetration. There is an abundant expression of both ACE2 and TMPRSS2 in sustentacular cells. In this study, we evaluated 102 COVID-19 hospitalized patients, of which 17.60% presented anosmia and 9.80% ageusia. ACE1, ACE2, and TMPRSS2 gene expression levels in nasopharyngeal tissue were obtained by RT-qPCR and measured using ΔCT analysis. ACE1 Alu287bp association was also evaluated. Logistic regression models were generated to estimate the effects of variables on ageusia and anosmia Association of ACE2 expression levels with ageusia. was observed (OR: 1.35;95% CI: 1.098-1.775);however, no association was observed between TMPRSS2 and ACE1 expression levels and ageusia. No association was observed among the three genes and anosmia, and the Alu287bp polymorphism was not associated with any of the outcomes. Lastly, we discuss whetherthere is a bridge linking these initial symptoms, including molecular factors, to long-term COVID-19 health consequences such as cognitive dysfunctions.

3.
Rev Med Virol ; 32(2): e2283, 2022 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1333037

RESUMEN

Biomarker identification may provide strategic opportunities to understand disease pathophysiology, predict outcomes, improve human health, and reduce healthcare costs. The highly heterogeneous Covid-19 clinical manifestation suggests a complex interaction of several different human, viral and environmental factors. Here, we systematically reviewed genetic association studies evaluating Covid-19 severity or susceptibility to SARS-CoV-2 infection following PRISMA recommendations. Our research comprised papers published until December 31st , 2020, in PubMed and BioRXiv databases focusing on genetic association studies with Covid-19 prognosis or susceptibility. We found 20 eligible genetic association studies, of which 11 assessed Covid-19 outcome and 14 evaluated infection susceptibility (five analyzed both effects). Q-genie assessment indicated moderate quality. Five large-scale association studies (GWAS, whole-genome, or exome sequencing) were reported with no consistent replication to date. Promising hits were found on the 3p21.31 region and ABO locus. Candidate gene studies examined ACE1, ACE2, TMPRSS2, IFITM3, APOE, Furin, IFNL3, IFNL4, HLA, TNF-ɑ genes, and ABO system. The most evaluated single locus was the ABO, and the most sampled region was the HLA with three and five candidate gene studies, respectively. Meta-analysis could not be performed. Available data showed the need for further reports to replicate claimed associations.


Asunto(s)
COVID-19 , COVID-19/epidemiología , COVID-19/genética , Humanos , Interleucinas , Proteínas de la Membrana , Pronóstico , Proteínas de Unión al ARN , SARS-CoV-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA